Properties

Label 2.2e4_3e2_7e2.4t3.7
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7056= 2^{4} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 19 x^{4} - 26 x^{3} + 2 x^{2} + 10 x + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 91\cdot 109 + 93\cdot 109^{2} + 93\cdot 109^{3} + 84\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 69\cdot 109 + 39\cdot 109^{2} + 35\cdot 109^{3} + 7\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 92\cdot 109 + 83\cdot 109^{2} + 104\cdot 109^{3} + 10\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 38\cdot 109 + 79\cdot 109^{2} + 62\cdot 109^{3} + 66\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 70\cdot 109 + 29\cdot 109^{2} + 46\cdot 109^{3} + 42\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 16\cdot 109 + 25\cdot 109^{2} + 4\cdot 109^{3} + 98\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 82 + 39\cdot 109 + 69\cdot 109^{2} + 73\cdot 109^{3} + 101\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 91 + 17\cdot 109 + 15\cdot 109^{2} + 15\cdot 109^{3} + 24\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,6)(5,8)$
$(1,2,5,3)(4,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $-2$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $4$ $(1,2,5,3)(4,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.