Properties

Label 2.2e4_3e2_5e2_11.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$39600= 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 15 x^{6} - 90 x^{4} + 1800 x^{2} - 2475 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 15.
Roots:
$r_{ 1 }$ $=$ $ 2 + 36\cdot 89 + 77\cdot 89^{2} + 40\cdot 89^{3} + 35\cdot 89^{4} + 48\cdot 89^{5} + 85\cdot 89^{6} + 11\cdot 89^{7} + 80\cdot 89^{8} + 89^{9} + 27\cdot 89^{10} + 63\cdot 89^{11} + 39\cdot 89^{12} + 87\cdot 89^{13} + 64\cdot 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 22 + 10\cdot 89 + 53\cdot 89^{2} + 46\cdot 89^{3} + 18\cdot 89^{4} + 22\cdot 89^{5} + 33\cdot 89^{6} + 51\cdot 89^{7} + 45\cdot 89^{8} + 28\cdot 89^{9} + 41\cdot 89^{11} + 25\cdot 89^{12} + 42\cdot 89^{13} + 28\cdot 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 26 + 42\cdot 89 + 6\cdot 89^{2} + 57\cdot 89^{3} + 58\cdot 89^{4} + 77\cdot 89^{5} + 11\cdot 89^{6} + 66\cdot 89^{7} + 83\cdot 89^{8} + 24\cdot 89^{9} + 78\cdot 89^{10} + 6\cdot 89^{11} + 19\cdot 89^{12} + 39\cdot 89^{13} + 36\cdot 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 39 + 44\cdot 89 + 26\cdot 89^{2} + 38\cdot 89^{3} + 31\cdot 89^{4} + 42\cdot 89^{5} + 9\cdot 89^{6} + 18\cdot 89^{7} + 86\cdot 89^{8} + 72\cdot 89^{9} + 70\cdot 89^{10} + 63\cdot 89^{11} + 47\cdot 89^{12} + 70\cdot 89^{13} + 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 50 + 44\cdot 89 + 62\cdot 89^{2} + 50\cdot 89^{3} + 57\cdot 89^{4} + 46\cdot 89^{5} + 79\cdot 89^{6} + 70\cdot 89^{7} + 2\cdot 89^{8} + 16\cdot 89^{9} + 18\cdot 89^{10} + 25\cdot 89^{11} + 41\cdot 89^{12} + 18\cdot 89^{13} + 87\cdot 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 63 + 46\cdot 89 + 82\cdot 89^{2} + 31\cdot 89^{3} + 30\cdot 89^{4} + 11\cdot 89^{5} + 77\cdot 89^{6} + 22\cdot 89^{7} + 5\cdot 89^{8} + 64\cdot 89^{9} + 10\cdot 89^{10} + 82\cdot 89^{11} + 69\cdot 89^{12} + 49\cdot 89^{13} + 52\cdot 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 67 + 78\cdot 89 + 35\cdot 89^{2} + 42\cdot 89^{3} + 70\cdot 89^{4} + 66\cdot 89^{5} + 55\cdot 89^{6} + 37\cdot 89^{7} + 43\cdot 89^{8} + 60\cdot 89^{9} + 88\cdot 89^{10} + 47\cdot 89^{11} + 63\cdot 89^{12} + 46\cdot 89^{13} + 60\cdot 89^{14} +O\left(89^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 87 + 52\cdot 89 + 11\cdot 89^{2} + 48\cdot 89^{3} + 53\cdot 89^{4} + 40\cdot 89^{5} + 3\cdot 89^{6} + 77\cdot 89^{7} + 8\cdot 89^{8} + 87\cdot 89^{9} + 61\cdot 89^{10} + 25\cdot 89^{11} + 49\cdot 89^{12} + 89^{13} + 24\cdot 89^{14} +O\left(89^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,7)(2,8)(4,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$8$$(1,3,2,5,8,6,7,4)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,6,2,4,8,3,7,5)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.