Properties

Label 2.2e4_3e2_5e2.8t7.3
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$3600= 2^{4} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} + 15 x^{6} + 60 x^{4} + 90 x^{2} + 45 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 16 + 169\cdot 179 + 76\cdot 179^{2} + 130\cdot 179^{3} + 17\cdot 179^{4} + 65\cdot 179^{5} + 108\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 26 + 65\cdot 179 + 136\cdot 179^{2} + 29\cdot 179^{3} + 99\cdot 179^{4} + 92\cdot 179^{5} + 35\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 41 + 104\cdot 179 + 57\cdot 179^{2} + 69\cdot 179^{3} + 88\cdot 179^{4} + 89\cdot 179^{5} + 65\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 86 + 78\cdot 179 + 19\cdot 179^{2} + 37\cdot 179^{3} + 159\cdot 179^{4} + 114\cdot 179^{5} + 45\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 93 + 100\cdot 179 + 159\cdot 179^{2} + 141\cdot 179^{3} + 19\cdot 179^{4} + 64\cdot 179^{5} + 133\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 138 + 74\cdot 179 + 121\cdot 179^{2} + 109\cdot 179^{3} + 90\cdot 179^{4} + 89\cdot 179^{5} + 113\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 153 + 113\cdot 179 + 42\cdot 179^{2} + 149\cdot 179^{3} + 79\cdot 179^{4} + 86\cdot 179^{5} + 143\cdot 179^{6} +O\left(179^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 163 + 9\cdot 179 + 102\cdot 179^{2} + 48\cdot 179^{3} + 161\cdot 179^{4} + 113\cdot 179^{5} + 70\cdot 179^{6} +O\left(179^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(1,3,2,5,8,6,7,4)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$2$ $8$ $(1,3,2,5,8,6,7,4)$ $0$ $0$
$2$ $8$ $(1,5,7,3,8,4,2,6)$ $0$ $0$
$2$ $8$ $(1,5,2,6,8,4,7,3)$ $0$ $0$
$2$ $8$ $(1,6,7,5,8,3,2,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.