Properties

Label 2.2e4_3e2_5e2.8t7.2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$3600= 2^{4} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 30 x^{4} + 45 x^{2} + 45 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 25\cdot 61 + 32\cdot 61^{2} + 55\cdot 61^{3} + 26\cdot 61^{4} + 17\cdot 61^{5} + 39\cdot 61^{6} + 50\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 4 + 35\cdot 61 + 2\cdot 61^{2} + 26\cdot 61^{3} + 22\cdot 61^{4} + 13\cdot 61^{5} + 2\cdot 61^{6} + 18\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 + 7\cdot 61 + 36\cdot 61^{2} + 35\cdot 61^{3} + 23\cdot 61^{4} + 44\cdot 61^{5} + 25\cdot 61^{6} + 31\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 19 + 3\cdot 61 + 39\cdot 61^{3} + 3\cdot 61^{4} + 41\cdot 61^{5} + 53\cdot 61^{6} + 5\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 42 + 57\cdot 61 + 60\cdot 61^{2} + 21\cdot 61^{3} + 57\cdot 61^{4} + 19\cdot 61^{5} + 7\cdot 61^{6} + 55\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 54 + 53\cdot 61 + 24\cdot 61^{2} + 25\cdot 61^{3} + 37\cdot 61^{4} + 16\cdot 61^{5} + 35\cdot 61^{6} + 29\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 57 + 25\cdot 61 + 58\cdot 61^{2} + 34\cdot 61^{3} + 38\cdot 61^{4} + 47\cdot 61^{5} + 58\cdot 61^{6} + 42\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 60 + 35\cdot 61 + 28\cdot 61^{2} + 5\cdot 61^{3} + 34\cdot 61^{4} + 43\cdot 61^{5} + 21\cdot 61^{6} + 10\cdot 61^{7} +O\left(61^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8,2)(3,5,6,4)$
$(1,6,7,4,8,3,2,5)$
$(3,6)(4,5)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,8)(2,7)$ $0$ $0$
$1$ $4$ $(1,7,8,2)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,2,8,7)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$2$ $8$ $(1,6,7,4,8,3,2,5)$ $0$ $0$
$2$ $8$ $(1,4,2,6,8,5,7,3)$ $0$ $0$
$2$ $8$ $(1,3,2,4,8,6,7,5)$ $0$ $0$
$2$ $8$ $(1,4,7,3,8,5,2,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.