Properties

Label 2.2e4_3e2_5e2.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3600= 2^{4} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 2 x^{5} - 2 x^{4} - 46 x^{3} + 98 x^{2} + 266 x + 361 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 55\cdot 61 + 58\cdot 61^{2} + 28\cdot 61^{3} + 19\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 56\cdot 61 + 11\cdot 61^{2} + 58\cdot 61^{3} + 4\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 30\cdot 61 + 60\cdot 61^{2} + 22\cdot 61^{3} + 59\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 23\cdot 61 + 44\cdot 61^{2} + 52\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 + 6\cdot 61 + 60\cdot 61^{2} + 10\cdot 61^{3} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 + 45\cdot 61 + 12\cdot 61^{2} + 54\cdot 61^{3} + 54\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 33\cdot 61 + 51\cdot 61^{2} + 19\cdot 61^{3} + 28\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 60 + 53\cdot 61 + 4\cdot 61^{2} + 57\cdot 61^{3} + 25\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,5,8)(3,7,4,6)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,8)(3,4)(6,7)$$-2$
$2$$2$$(1,3)(2,6)(4,5)(7,8)$$0$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$4$$(1,2,5,8)(3,7,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.