Properties

Label 2.2e4_3e2_5e2.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3600= 2^{4} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 31 x^{4} - 50 x^{3} + 2 x^{2} + 22 x + 121 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 28\cdot 29 + 7\cdot 29^{2} + 3\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 9\cdot 29 + 26\cdot 29^{2} + 19\cdot 29^{3} + 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 21\cdot 29 + 14\cdot 29^{2} + 10\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 2\cdot 29 + 4\cdot 29^{2} + 27\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 + 26\cdot 29 + 24\cdot 29^{2} + 29^{3} + 2\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 7\cdot 29 + 14\cdot 29^{2} + 18\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 25 + 19\cdot 29 + 2\cdot 29^{2} + 9\cdot 29^{3} + 27\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 27 + 21\cdot 29^{2} + 25\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.