Properties

Label 2.2e4_3e2_5.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 5 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$720= 2^{4} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 6 x^{5} + 14 x^{4} - 30 x^{3} + 50 x^{2} - 50 x + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 2\cdot 41 + 38\cdot 41^{2} + 6\cdot 41^{3} + 13\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 29\cdot 41 + 37\cdot 41^{2} + 13\cdot 41^{3} + 21\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 3\cdot 41 + 24\cdot 41^{2} + 14\cdot 41^{3} + 27\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 7\cdot 41 + 34\cdot 41^{2} + 34\cdot 41^{3} + 30\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 + 37\cdot 41 + 29\cdot 41^{2} + 23\cdot 41^{3} + 36\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 + 3\cdot 41 + 23\cdot 41^{2} + 29\cdot 41^{3} + 18\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 24\cdot 41 + 12\cdot 41^{2} + 9\cdot 41^{3} + 39\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 36 + 13\cdot 41 + 5\cdot 41^{2} + 31\cdot 41^{3} + 17\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,8)(6,7)$
$(1,4,3,6)(2,7,5,8)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,7)(2,4)(3,8)(5,6)$ $0$
$2$ $4$ $(1,4,3,6)(2,7,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.