Properties

Label 2.2e4_3e2_23.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3312= 2^{4} \cdot 3^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 30 x^{6} + 195 x^{4} - 378 x^{2} + 225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 30 + 185\cdot 227 + 20\cdot 227^{2} + 128\cdot 227^{3} + 116\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 + 99\cdot 227 + 94\cdot 227^{2} + 182\cdot 227^{3} + 44\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 + 159\cdot 227 + 196\cdot 227^{2} + 96\cdot 227^{3} + 51\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 70 + 10\cdot 227 + 142\cdot 227^{2} + 46\cdot 227^{3} + 14\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 157 + 216\cdot 227 + 84\cdot 227^{2} + 180\cdot 227^{3} + 212\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 161 + 67\cdot 227 + 30\cdot 227^{2} + 130\cdot 227^{3} + 175\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 166 + 127\cdot 227 + 132\cdot 227^{2} + 44\cdot 227^{3} + 182\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 197 + 41\cdot 227 + 206\cdot 227^{2} + 98\cdot 227^{3} + 110\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.