Properties

Label 2.2e4_3e2_23.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 3^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$3312= 2^{4} \cdot 3^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 12 x^{2} - 2 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 7\cdot 13 + 11\cdot 13^{2} + 3\cdot 13^{3} + 13^{4} + 4\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 + 12\cdot 13 + 10\cdot 13^{3} + 4\cdot 13^{4} + 9\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 + 13 + 8\cdot 13^{2} + 4\cdot 13^{3} + 11\cdot 13^{4} + 11\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 8 + 5\cdot 13 + 5\cdot 13^{2} + 7\cdot 13^{3} + 8\cdot 13^{4} +O\left(13^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.