Properties

Label 2.2e4_3e2_13e2.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 3^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$24336= 2^{4} \cdot 3^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 8 x^{2} + 32 x + 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 26\cdot 29 + 16\cdot 29^{2} + 15\cdot 29^{3} + 23\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 16\cdot 29 + 7\cdot 29^{2} + 23\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 13\cdot 29 + 5\cdot 29^{2} + 9\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 29 + 28\cdot 29^{2} + 9\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.