Properties

Label 2.2e4_3e2_13.4t3.9c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1872= 2^{4} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 2 x^{5} - 86 x^{4} + 194 x^{3} + 410 x^{2} - 1414 x + 997 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 61\cdot 67 + 9\cdot 67^{2} + 13\cdot 67^{3} + 59\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 19\cdot 67 + 63\cdot 67^{2} + 54\cdot 67^{3} + 54\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 39\cdot 67 + 23\cdot 67^{2} + 23\cdot 67^{3} + 61\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 18\cdot 67 + 32\cdot 67^{3} + 46\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 + 27\cdot 67 + 22\cdot 67^{2} + 45\cdot 67^{3} + 60\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 + 23\cdot 67 + 25\cdot 67^{2} + 56\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 19 + 16\cdot 67 + 29\cdot 67^{2} + 9\cdot 67^{3} + 12\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 42 + 63\cdot 67 + 26\cdot 67^{2} + 22\cdot 67^{3} + 51\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,7)(5,8)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,4)(3,8)(5,6)$$-2$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,3)(2,5)(4,6)(7,8)$$0$
$2$$4$$(1,5,7,6)(2,3,4,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.