Properties

Label 2.2e4_3e2_13.4t3.8
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1872= 2^{4} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 10 x^{6} - 2 x^{5} + 235 x^{4} - 754 x^{3} + 1040 x^{2} - 676 x + 169 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 4\cdot 19 + 9\cdot 19^{2} + 13\cdot 19^{3} + 15\cdot 19^{4} + 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 18\cdot 19 + 17\cdot 19^{2} + 3\cdot 19^{3} + 3\cdot 19^{4} + 4\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 + 2\cdot 19 + 2\cdot 19^{2} + 18\cdot 19^{3} + 4\cdot 19^{4} + 10\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 8\cdot 19 + 4\cdot 19^{2} + 11\cdot 19^{3} + 7\cdot 19^{4} + 7\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 15 + 5\cdot 19 + 5\cdot 19^{2} + 3\cdot 19^{3} + 16\cdot 19^{4} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 16 + 2\cdot 19 + 3\cdot 19^{2} + 4\cdot 19^{3} + 12\cdot 19^{4} + 10\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 17 + 5\cdot 19 + 16\cdot 19^{2} + 8\cdot 19^{3} + 14\cdot 19^{4} + 4\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 18 + 8\cdot 19 + 17\cdot 19^{2} + 12\cdot 19^{3} + 19^{4} + 17\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,7)(6,8)$
$(1,3)(2,5)(4,8)(6,7)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $4$ $(1,6,2,8)(3,4,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.