Properties

Label 2.2e4_3e2_13.4t3.6
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 3^{2} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1872= 2^{4} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{4} + 12 x^{2} + 39 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 5\cdot 19 + 14\cdot 19^{2} + 17\cdot 19^{3} + 10\cdot 19^{4} + 17\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 2\cdot 19 + 3\cdot 19^{2} + 13\cdot 19^{3} + 13\cdot 19^{4} + 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 16\cdot 19 + 15\cdot 19^{2} + 5\cdot 19^{3} + 5\cdot 19^{4} + 17\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 + 13\cdot 19 + 4\cdot 19^{2} + 19^{3} + 8\cdot 19^{4} + 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.