Properties

Label 2.2e4_3_7e2.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2352= 2^{4} \cdot 3 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 8 x^{6} + 16 x^{5} + 14 x^{4} - 128 x^{3} + 232 x^{2} - 96 x + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 41\cdot 47 + 14\cdot 47^{2} + 33\cdot 47^{3} + 32\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 35\cdot 47 + 31\cdot 47^{2} + 27\cdot 47^{3} + 19\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 4\cdot 47 + 24\cdot 47^{2} + 20\cdot 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 7\cdot 47 + 24\cdot 47^{2} + 46\cdot 47^{3} + 46\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 + 4\cdot 47 + 14\cdot 47^{2} + 42\cdot 47^{3} + 39\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 + 24\cdot 47 + 41\cdot 47^{2} + 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 41 + 23\cdot 47 + 34\cdot 47^{2} + 6\cdot 47^{3} + 30\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 44 + 46\cdot 47 + 2\cdot 47^{2} + 9\cdot 47^{3} + 38\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,8)(2,5,7,6)$
$(1,2)(3,6)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $0$
$2$ $4$ $(1,3,4,8)(2,5,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.