Properties

Label 2.2e4_3_7e2.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2352= 2^{4} \cdot 3 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 20 x^{6} + 16 x^{5} + 63 x^{4} - 16 x^{3} - 20 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e2_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 39\cdot 59 + 51\cdot 59^{2} + 54\cdot 59^{3} + 18\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 19\cdot 59 + 58\cdot 59^{2} + 50\cdot 59^{3} + 35\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 14\cdot 59 + 8\cdot 59^{2} + 42\cdot 59^{3} + 54\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 58\cdot 59 + 18\cdot 59^{2} + 6\cdot 59^{3} + 13\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 + 32\cdot 59 + 2\cdot 59^{2} + 26\cdot 59^{3} + 24\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 + 35\cdot 59 + 17\cdot 59^{2} + 17\cdot 59^{3} + 49\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 45 + 25\cdot 59 + 5\cdot 59^{2} + 2\cdot 59^{3} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 56 + 10\cdot 59 + 14\cdot 59^{2} + 36\cdot 59^{3} + 39\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,6)(5,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)(7,8)$$-2$
$2$$2$$(1,2)(3,8)(4,6)(5,7)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,4,8)(2,3,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.