Properties

Label 2.2e4_3_7.12t18.2c2
Dimension 2
Group $C_6\times S_3$
Conductor $ 2^{4} \cdot 3 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_6\times S_3$
Conductor:$336= 2^{4} \cdot 3 \cdot 7 $
Artin number field: Splitting field of $f= x^{12} + x^{10} - 6 x^{8} - 3 x^{6} + 14 x^{4} - 7 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6\times S_3$
Parity: Odd
Determinant: 1.3_7.6t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{4} + 13 a^{3} + 7 a^{2} + 5 + \left(4 a^{5} + 14 a^{4} + 9 a^{3} + 13 a^{2} + 14 a + 11\right)\cdot 17 + \left(10 a^{5} + 16 a^{4} + 2 a^{3} + 8 a^{2} + 4 a + 1\right)\cdot 17^{2} + \left(14 a^{5} + 11 a^{4} + 9 a^{3} + 3 a^{2} + 13 a + 12\right)\cdot 17^{3} + \left(9 a^{5} + 3 a^{4} + 9 a^{3} + 15 a^{2} + a + 9\right)\cdot 17^{4} + \left(2 a^{5} + 4 a^{4} + 4 a^{3} + 15 a^{2} + 14 a + 2\right)\cdot 17^{5} + \left(4 a^{5} + 12 a^{4} + 15 a^{3} + 6 a^{2} + 4 a + 13\right)\cdot 17^{6} + \left(7 a^{5} + 13 a^{4} + 11 a^{3} + a^{2} + 10 a + 8\right)\cdot 17^{7} + \left(11 a^{5} + 13 a^{2} + a + 11\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 2 }$ $=$ $ a^{5} + 14 a^{4} + 11 a^{3} + 4 a^{2} + 7 + \left(10 a^{5} + 4 a^{4} + 16 a^{3} + 2 a^{2} + 6 a + 14\right)\cdot 17 + \left(9 a^{5} + 5 a^{4} + 6 a^{3} + a^{2} + 10 a + 13\right)\cdot 17^{2} + \left(12 a^{5} + 9 a^{4} + 7 a^{3} + 13 a + 1\right)\cdot 17^{3} + \left(a^{5} + 9 a^{4} + 16 a^{3} + 9 a^{2} + 4 a + 4\right)\cdot 17^{4} + \left(14 a^{5} + 2 a^{4} + 4 a^{2} + 8 a + 15\right)\cdot 17^{5} + \left(10 a^{5} + 10 a^{4} + 11 a^{3} + 11 a^{2} + 13 a + 2\right)\cdot 17^{6} + \left(2 a^{5} + 11 a^{4} + 10 a^{3} + 2 a^{2} + a + 9\right)\cdot 17^{7} + \left(11 a^{5} + 11 a^{4} + 11 a^{3} + 4 a^{2} + 3 a + 12\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{5} + 16 a^{4} + 14 a^{3} + 7 a^{2} + 10 a + 16 + \left(13 a^{5} + a^{4} + 13 a^{3} + 9 a^{2} + 15 a + 5\right)\cdot 17 + \left(7 a^{5} + 11 a^{4} + 10 a^{3} + 2 a^{2} + 6 a + 3\right)\cdot 17^{2} + \left(7 a^{5} + 6 a^{4} + 9 a^{3} + 7 a^{2} + 3 a + 2\right)\cdot 17^{3} + \left(14 a^{5} + 4 a^{4} + 16 a^{3} + 9 a^{2} + 10 a + 1\right)\cdot 17^{4} + \left(10 a^{5} + 11 a^{4} + 3 a^{2} + 12 a + 10\right)\cdot 17^{5} + \left(a^{4} + 3 a^{3} + 12 a^{2} + 8 a + 16\right)\cdot 17^{6} + \left(2 a^{5} + 9 a^{4} + 4 a^{3} + 14 a^{2} + 16 a + 13\right)\cdot 17^{7} + \left(a^{5} + 2 a^{4} + 16 a^{3} + 13 a^{2} + 4 a + 6\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{5} + 13 a^{4} + 11 a^{3} + a^{2} + 15 a + 9 + \left(11 a^{5} + 9 a^{4} + 9 a^{3} + 2 a^{2} + 1\right)\cdot 17 + \left(8 a^{5} + a^{4} + 3 a^{3} + 6 a^{2} + 16 a + 12\right)\cdot 17^{2} + \left(10 a^{5} + 4 a^{4} + 12 a^{3} + 10 a^{2} + 16 a + 9\right)\cdot 17^{3} + \left(9 a^{5} + 11 a^{4} + 9 a^{3} + 4 a^{2} + 2 a + 1\right)\cdot 17^{4} + \left(14 a^{5} + 6 a^{4} + 3 a^{3} + a^{2} + 16 a + 2\right)\cdot 17^{5} + \left(16 a^{5} + 5 a^{4} + 12 a^{3} + 9 a^{2} + 7 a + 8\right)\cdot 17^{6} + \left(16 a^{5} + 9 a^{4} + 7 a^{3} + 10 a^{2} + 16 a + 15\right)\cdot 17^{7} + \left(16 a^{4} + 14 a^{3} + 15 a^{2} + a\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 5 }$ $=$ $ a^{5} + 13 a^{4} + 13 a^{3} + 7 a^{2} + 7 a + 2 + \left(14 a^{5} + 12 a^{4} + 3 a^{3} + 10 a^{2} + 3 a + 12\right)\cdot 17 + \left(4 a^{5} + 10 a^{4} + 10 a^{2} + 3 a + 10\right)\cdot 17^{2} + \left(15 a^{5} + 10 a^{4} + 4 a^{3} + 11 a^{2} + 13 a\right)\cdot 17^{3} + \left(9 a^{5} + 4 a^{3} + 13 a^{2} + 15\right)\cdot 17^{4} + \left(3 a^{4} + 14 a^{3} + 11 a^{2} + 14 a + 16\right)\cdot 17^{5} + \left(12 a^{5} + 15 a^{4} + 8 a^{3} + 8 a^{2} + 8 a + 9\right)\cdot 17^{6} + \left(5 a^{5} + 9 a^{4} + 9 a^{3} + 12 a^{2} + 6 a + 14\right)\cdot 17^{7} + \left(6 a^{5} + 10 a^{3} + 13 a^{2} + 13 a\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 7 a^{4} + a^{3} + 16 a^{2} + 2 a + 12 + \left(10 a^{5} + 14 a^{4} + a^{3} + 11 a^{2} + 9 a + 6\right)\cdot 17 + \left(4 a^{5} + 14 a^{4} + 3 a^{3} + 14 a^{2} + 5 a + 10\right)\cdot 17^{2} + \left(14 a^{5} + 15 a^{4} + 3 a^{3} + 11 a^{2} + 16 a + 3\right)\cdot 17^{3} + \left(5 a^{5} + 4 a^{4} + 4 a^{3} + 7 a^{2} + 4 a\right)\cdot 17^{4} + \left(2 a^{5} + 9 a^{4} + 15 a^{3} + 8 a^{2} + 16 a + 13\right)\cdot 17^{5} + \left(6 a^{5} + 13 a^{4} + 3 a^{3} + 7 a^{2} + 6\right)\cdot 17^{6} + \left(12 a^{5} + 11 a^{4} + 7 a^{3} + 15 a^{2} + 15 a + 3\right)\cdot 17^{7} + \left(6 a^{5} + 9 a^{4} + a^{3} + 3 a^{2} + 14 a + 16\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 16 a^{5} + 3 a^{4} + 6 a^{3} + 13 a^{2} + 10 + \left(6 a^{5} + 12 a^{4} + 14 a^{2} + 11 a + 2\right)\cdot 17 + \left(7 a^{5} + 11 a^{4} + 10 a^{3} + 15 a^{2} + 6 a + 3\right)\cdot 17^{2} + \left(4 a^{5} + 7 a^{4} + 9 a^{3} + 16 a^{2} + 3 a + 15\right)\cdot 17^{3} + \left(15 a^{5} + 7 a^{4} + 7 a^{2} + 12 a + 12\right)\cdot 17^{4} + \left(2 a^{5} + 14 a^{4} + 16 a^{3} + 12 a^{2} + 8 a + 1\right)\cdot 17^{5} + \left(6 a^{5} + 6 a^{4} + 5 a^{3} + 5 a^{2} + 3 a + 14\right)\cdot 17^{6} + \left(14 a^{5} + 5 a^{4} + 6 a^{3} + 14 a^{2} + 15 a + 7\right)\cdot 17^{7} + \left(5 a^{5} + 5 a^{4} + 5 a^{3} + 12 a^{2} + 13 a + 4\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 12 a^{4} + 4 a^{3} + 10 a^{2} + 12 + \left(13 a^{5} + 2 a^{4} + 7 a^{3} + 3 a^{2} + 3 a + 5\right)\cdot 17 + \left(6 a^{5} + 14 a^{3} + 8 a^{2} + 12 a + 15\right)\cdot 17^{2} + \left(2 a^{5} + 5 a^{4} + 7 a^{3} + 13 a^{2} + 3 a + 4\right)\cdot 17^{3} + \left(7 a^{5} + 13 a^{4} + 7 a^{3} + a^{2} + 15 a + 7\right)\cdot 17^{4} + \left(14 a^{5} + 12 a^{4} + 12 a^{3} + a^{2} + 2 a + 14\right)\cdot 17^{5} + \left(12 a^{5} + 4 a^{4} + a^{3} + 10 a^{2} + 12 a + 3\right)\cdot 17^{6} + \left(9 a^{5} + 3 a^{4} + 5 a^{3} + 15 a^{2} + 6 a + 8\right)\cdot 17^{7} + \left(5 a^{5} + 16 a^{4} + 16 a^{3} + 3 a^{2} + 15 a + 5\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{5} + 4 a^{4} + 6 a^{3} + 16 a^{2} + 2 a + 8 + \left(5 a^{5} + 7 a^{4} + 7 a^{3} + 14 a^{2} + 16 a + 15\right)\cdot 17 + \left(8 a^{5} + 15 a^{4} + 13 a^{3} + 10 a^{2} + 4\right)\cdot 17^{2} + \left(6 a^{5} + 12 a^{4} + 4 a^{3} + 6 a^{2} + 7\right)\cdot 17^{3} + \left(7 a^{5} + 5 a^{4} + 7 a^{3} + 12 a^{2} + 14 a + 15\right)\cdot 17^{4} + \left(2 a^{5} + 10 a^{4} + 13 a^{3} + 15 a^{2} + 14\right)\cdot 17^{5} + \left(11 a^{4} + 4 a^{3} + 7 a^{2} + 9 a + 8\right)\cdot 17^{6} + \left(7 a^{4} + 9 a^{3} + 6 a^{2} + 1\right)\cdot 17^{7} + \left(16 a^{5} + 2 a^{3} + a^{2} + 15 a + 16\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 10 }$ $=$ $ 10 a^{5} + a^{4} + 3 a^{3} + 10 a^{2} + 7 a + 1 + \left(3 a^{5} + 15 a^{4} + 3 a^{3} + 7 a^{2} + a + 11\right)\cdot 17 + \left(9 a^{5} + 5 a^{4} + 6 a^{3} + 14 a^{2} + 10 a + 13\right)\cdot 17^{2} + \left(9 a^{5} + 10 a^{4} + 7 a^{3} + 9 a^{2} + 13 a + 14\right)\cdot 17^{3} + \left(2 a^{5} + 12 a^{4} + 7 a^{2} + 6 a + 15\right)\cdot 17^{4} + \left(6 a^{5} + 5 a^{4} + 16 a^{3} + 13 a^{2} + 4 a + 6\right)\cdot 17^{5} + \left(16 a^{5} + 15 a^{4} + 13 a^{3} + 4 a^{2} + 8 a\right)\cdot 17^{6} + \left(14 a^{5} + 7 a^{4} + 12 a^{3} + 2 a^{2} + 3\right)\cdot 17^{7} + \left(15 a^{5} + 14 a^{4} + 3 a^{2} + 12 a + 10\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 11 }$ $=$ $ 10 a^{4} + 16 a^{3} + a^{2} + 15 a + 5 + \left(7 a^{5} + 2 a^{4} + 15 a^{3} + 5 a^{2} + 7 a + 10\right)\cdot 17 + \left(12 a^{5} + 2 a^{4} + 13 a^{3} + 2 a^{2} + 11 a + 6\right)\cdot 17^{2} + \left(2 a^{5} + a^{4} + 13 a^{3} + 5 a^{2} + 13\right)\cdot 17^{3} + \left(11 a^{5} + 12 a^{4} + 12 a^{3} + 9 a^{2} + 12 a + 16\right)\cdot 17^{4} + \left(14 a^{5} + 7 a^{4} + a^{3} + 8 a^{2} + 3\right)\cdot 17^{5} + \left(10 a^{5} + 3 a^{4} + 13 a^{3} + 9 a^{2} + 16 a + 10\right)\cdot 17^{6} + \left(4 a^{5} + 5 a^{4} + 9 a^{3} + a^{2} + a + 13\right)\cdot 17^{7} + \left(10 a^{5} + 7 a^{4} + 15 a^{3} + 13 a^{2} + 2 a\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 12 }$ $=$ $ 16 a^{5} + 4 a^{4} + 4 a^{3} + 10 a^{2} + 10 a + 15 + \left(2 a^{5} + 4 a^{4} + 13 a^{3} + 6 a^{2} + 13 a + 4\right)\cdot 17 + \left(12 a^{5} + 6 a^{4} + 16 a^{3} + 6 a^{2} + 13 a + 6\right)\cdot 17^{2} + \left(a^{5} + 6 a^{4} + 12 a^{3} + 5 a^{2} + 3 a + 16\right)\cdot 17^{3} + \left(7 a^{5} + 16 a^{4} + 12 a^{3} + 3 a^{2} + 16 a + 1\right)\cdot 17^{4} + \left(16 a^{5} + 13 a^{4} + 2 a^{3} + 5 a^{2} + 2 a\right)\cdot 17^{5} + \left(4 a^{5} + a^{4} + 8 a^{3} + 8 a^{2} + 8 a + 7\right)\cdot 17^{6} + \left(11 a^{5} + 7 a^{4} + 7 a^{3} + 4 a^{2} + 10 a + 2\right)\cdot 17^{7} + \left(10 a^{5} + 16 a^{4} + 6 a^{3} + 3 a^{2} + 3 a + 16\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(2,6,4)(7,11,9)$
$(1,8)(2,7)(3,10)(4,9)(5,12)(6,11)$
$(1,6)(2,3)(4,5)(7,10)(8,11)(9,12)$
$(1,12,3,8,5,10)(2,9,6,7,4,11)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,10)(4,9)(5,12)(6,11)$$-2$
$3$$2$$(1,6)(2,3)(4,5)(7,10)(8,11)(9,12)$$0$
$3$$2$$(1,11)(2,10)(3,7)(4,12)(5,9)(6,8)$$0$
$1$$3$$(1,5,3)(2,6,4)(7,11,9)(8,12,10)$$2 \zeta_{3}$
$1$$3$$(1,3,5)(2,4,6)(7,9,11)(8,10,12)$$-2 \zeta_{3} - 2$
$2$$3$$(1,3,5)(2,6,4)(7,11,9)(8,10,12)$$-1$
$2$$3$$(2,6,4)(7,11,9)$$\zeta_{3} + 1$
$2$$3$$(2,4,6)(7,9,11)$$-\zeta_{3}$
$1$$6$$(1,10,5,8,3,12)(2,9,6,7,4,11)$$2 \zeta_{3} + 2$
$1$$6$$(1,12,3,8,5,10)(2,11,4,7,6,9)$$-2 \zeta_{3}$
$2$$6$$(1,12,3,8,5,10)(2,9,6,7,4,11)$$1$
$2$$6$$(1,8)(2,11,4,7,6,9)(3,10)(5,12)$$-\zeta_{3} - 1$
$2$$6$$(1,8)(2,9,6,7,4,11)(3,10)(5,12)$$\zeta_{3}$
$3$$6$$(1,4,5,2,3,6)(7,10,11,8,9,12)$$0$
$3$$6$$(1,6,3,2,5,4)(7,12,9,8,11,10)$$0$
$3$$6$$(1,11,5,9,3,7)(2,8,6,12,4,10)$$0$
$3$$6$$(1,7,3,9,5,11)(2,10,4,12,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.