Properties

Label 2.1200.6t3.c
Dimension $2$
Group $D_{6}$
Conductor $1200$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.1440000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: 3.1.300.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \(x^{2} + 16 x + 3\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 3 a + \left(12 a + 15\right)\cdot 17 + \left(15 a + 7\right)\cdot 17^{2} + \left(9 a + 9\right)\cdot 17^{3} + 14\cdot 17^{4} + \left(13 a + 16\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 14 a + 3 + \left(4 a + 7\right)\cdot 17 + \left(a + 11\right)\cdot 17^{2} + \left(7 a + 3\right)\cdot 17^{3} + \left(16 a + 5\right)\cdot 17^{4} + \left(3 a + 12\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 9 + 7\cdot 17 + 5\cdot 17^{2} + 16\cdot 17^{3} + 7\cdot 17^{4} + 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + \left(13 a + 8\right)\cdot 17 + \left(a + 6\right)\cdot 17^{2} + 13 a\cdot 17^{3} + \left(12 a + 7\right)\cdot 17^{4} + \left(16 a + 14\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 12 a + 5 + \left(3 a + 16\right)\cdot 17 + \left(15 a + 11\right)\cdot 17^{2} + \left(3 a + 11\right)\cdot 17^{3} + \left(4 a + 6\right)\cdot 17^{4} + 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 2 + 14\cdot 17 + 7\cdot 17^{2} + 9\cdot 17^{3} + 9\cdot 17^{4} + 4\cdot 17^{5} +O(17^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,6)(3,5)$
$(1,3,2,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,2)(4,5)$ $0$
$3$ $2$ $(1,4)(2,3)(5,6)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.