Properties

Label 2.2e4_3_5_13.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 3 \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$3120= 2^{4} \cdot 3 \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{6} + 8 x^{4} + 16 x^{2} - 780 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 3\cdot 19 + 18\cdot 19^{2} + 16\cdot 19^{3} + 19^{4} + 19^{6} + 16\cdot 19^{7} + 4\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 8 + \left(2 a + 9\right)\cdot 19 + \left(13 a + 4\right)\cdot 19^{2} + 14 a\cdot 19^{3} + \left(14 a + 18\right)\cdot 19^{4} + \left(16 a + 17\right)\cdot 19^{5} + \left(4 a + 14\right)\cdot 19^{6} + \left(11 a + 7\right)\cdot 19^{7} + \left(13 a + 15\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 5 + \left(2 a + 13\right)\cdot 19 + \left(13 a + 3\right)\cdot 19^{2} + \left(14 a + 17\right)\cdot 19^{3} + 14 a\cdot 19^{4} + \left(16 a + 18\right)\cdot 19^{5} + \left(4 a + 15\right)\cdot 19^{6} + \left(11 a + 4\right)\cdot 19^{7} + \left(13 a + 1\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 3 + 15\cdot 19 + 2\cdot 19^{3} + 17\cdot 19^{4} + 18\cdot 19^{5} + 17\cdot 19^{6} + 2\cdot 19^{7} + 14\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 11 + \left(16 a + 9\right)\cdot 19 + \left(5 a + 14\right)\cdot 19^{2} + \left(4 a + 18\right)\cdot 19^{3} + 4 a\cdot 19^{4} + \left(2 a + 1\right)\cdot 19^{5} + \left(14 a + 4\right)\cdot 19^{6} + \left(7 a + 11\right)\cdot 19^{7} + \left(5 a + 3\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 14 + \left(16 a + 5\right)\cdot 19 + \left(5 a + 15\right)\cdot 19^{2} + \left(4 a + 1\right)\cdot 19^{3} + \left(4 a + 18\right)\cdot 19^{4} + 2 a\cdot 19^{5} + \left(14 a + 3\right)\cdot 19^{6} + \left(7 a + 14\right)\cdot 19^{7} + \left(5 a + 17\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,6)(3,5)$
$(1,3,2,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,2)(4,5)$ $0$
$3$ $2$ $(1,4)(2,3)(5,6)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.