Properties

Label 2.2e4_3_37.8t6.2c2
Dimension 2
Group $D_{8}$
Conductor $ 2^{4} \cdot 3 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$1776= 2^{4} \cdot 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} + 8 x^{6} + 18 x^{4} + 17 x^{2} + 37 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.3_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 30 + 70\cdot 151 + 57\cdot 151^{2} + 13\cdot 151^{3} + 63\cdot 151^{4} + 37\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 36 + 47\cdot 151 + 85\cdot 151^{2} + 66\cdot 151^{3} + 135\cdot 151^{4} +O\left(151^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 38 + 92\cdot 151 + 25\cdot 151^{2} + 140\cdot 151^{3} + 53\cdot 151^{4} + 42\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 60 + 9\cdot 151 + 98\cdot 151^{2} + 135\cdot 151^{3} + 80\cdot 151^{4} + 4\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 91 + 141\cdot 151 + 52\cdot 151^{2} + 15\cdot 151^{3} + 70\cdot 151^{4} + 146\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 113 + 58\cdot 151 + 125\cdot 151^{2} + 10\cdot 151^{3} + 97\cdot 151^{4} + 108\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 115 + 103\cdot 151 + 65\cdot 151^{2} + 84\cdot 151^{3} + 15\cdot 151^{4} + 150\cdot 151^{5} +O\left(151^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 121 + 80\cdot 151 + 93\cdot 151^{2} + 137\cdot 151^{3} + 87\cdot 151^{4} + 113\cdot 151^{5} +O\left(151^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,7,3,8,5,2,6)$
$(1,7,8,2)(3,5,6,4)$
$(1,8)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,8)(3,4)(5,6)$$0$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$8$$(1,4,7,3,8,5,2,6)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,2,4,8,6,7,5)$$-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.