Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 151 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 + 70\cdot 151 + 57\cdot 151^{2} + 13\cdot 151^{3} + 63\cdot 151^{4} + 37\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 36 + 47\cdot 151 + 85\cdot 151^{2} + 66\cdot 151^{3} + 135\cdot 151^{4} +O\left(151^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 38 + 92\cdot 151 + 25\cdot 151^{2} + 140\cdot 151^{3} + 53\cdot 151^{4} + 42\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 60 + 9\cdot 151 + 98\cdot 151^{2} + 135\cdot 151^{3} + 80\cdot 151^{4} + 4\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 91 + 141\cdot 151 + 52\cdot 151^{2} + 15\cdot 151^{3} + 70\cdot 151^{4} + 146\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 113 + 58\cdot 151 + 125\cdot 151^{2} + 10\cdot 151^{3} + 97\cdot 151^{4} + 108\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 115 + 103\cdot 151 + 65\cdot 151^{2} + 84\cdot 151^{3} + 15\cdot 151^{4} + 150\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 121 + 80\cdot 151 + 93\cdot 151^{2} + 137\cdot 151^{3} + 87\cdot 151^{4} + 113\cdot 151^{5} +O\left(151^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,7,3,8,5,2,6)$ |
| $(1,7,8,2)(3,5,6,4)$ |
| $(1,8)(3,4)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
$-2$ |
| $4$ |
$2$ |
$(1,8)(3,4)(5,6)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,4,7,3,8,5,2,6)$ |
$-\zeta_{8}^{3} + \zeta_{8}$ |
$\zeta_{8}^{3} - \zeta_{8}$ |
| $2$ |
$8$ |
$(1,3,2,4,8,6,7,5)$ |
$\zeta_{8}^{3} - \zeta_{8}$ |
$-\zeta_{8}^{3} + \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.