Properties

Label 2.1776.8t6.a
Dimension $2$
Group $D_{8}$
Conductor $1776$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:\(1776\)\(\medspace = 2^{4} \cdot 3 \cdot 37 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.1050340608.4
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.0.333.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 30 + 70\cdot 151 + 57\cdot 151^{2} + 13\cdot 151^{3} + 63\cdot 151^{4} + 37\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 36 + 47\cdot 151 + 85\cdot 151^{2} + 66\cdot 151^{3} + 135\cdot 151^{4} +O(151^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 38 + 92\cdot 151 + 25\cdot 151^{2} + 140\cdot 151^{3} + 53\cdot 151^{4} + 42\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 60 + 9\cdot 151 + 98\cdot 151^{2} + 135\cdot 151^{3} + 80\cdot 151^{4} + 4\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 91 + 141\cdot 151 + 52\cdot 151^{2} + 15\cdot 151^{3} + 70\cdot 151^{4} + 146\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 113 + 58\cdot 151 + 125\cdot 151^{2} + 10\cdot 151^{3} + 97\cdot 151^{4} + 108\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 115 + 103\cdot 151 + 65\cdot 151^{2} + 84\cdot 151^{3} + 15\cdot 151^{4} + 150\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 121 + 80\cdot 151 + 93\cdot 151^{2} + 137\cdot 151^{3} + 87\cdot 151^{4} + 113\cdot 151^{5} +O(151^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,7,3,8,5,2,6)$
$(1,7,8,2)(3,5,6,4)$
$(1,8)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,8)(3,4)(5,6)$ $0$ $0$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$2$ $8$ $(1,4,7,3,8,5,2,6)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,3,2,4,8,6,7,5)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.