Properties

Label 2.2e4_3_37.4t3.7c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1776= 2^{4} \cdot 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} + 28 x^{4} - 15 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 48\cdot 67 + 56\cdot 67^{2} + 33\cdot 67^{3} + 6\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 37\cdot 67 + 24\cdot 67^{2} + 55\cdot 67^{3} + 60\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 66\cdot 67 + 44\cdot 67^{2} + 63\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 7\cdot 67 + 3\cdot 67^{2} + 31\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 + 59\cdot 67 + 63\cdot 67^{2} + 35\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 + 22\cdot 67^{2} + 66\cdot 67^{3} + 3\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 + 29\cdot 67 + 42\cdot 67^{2} + 11\cdot 67^{3} + 6\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 62 + 18\cdot 67 + 10\cdot 67^{2} + 33\cdot 67^{3} + 60\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.