Properties

Label 2.2e4_3_13e2.8t17.1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{4} \cdot 3 \cdot 13^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$8112= 2^{4} \cdot 3 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 7 x^{6} + 20 x^{4} - 26 x^{2} + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 4 + 28\cdot 43 + 24\cdot 43^{2} + 14\cdot 43^{3} + 43^{4} + 4\cdot 43^{5} + 30\cdot 43^{6} + 24\cdot 43^{7} + 36\cdot 43^{8} + 14\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 6 + 21\cdot 43 + 5\cdot 43^{2} + 8\cdot 43^{3} + 21\cdot 43^{4} + 10\cdot 43^{5} + 13\cdot 43^{6} + 17\cdot 43^{7} + 4\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 14 + 6\cdot 43 + 12\cdot 43^{2} + 30\cdot 43^{3} + 25\cdot 43^{4} + 28\cdot 43^{5} + 30\cdot 43^{6} + 18\cdot 43^{7} + 29\cdot 43^{8} + 19\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 19 + 37\cdot 43 + 34\cdot 43^{2} + 33\cdot 43^{3} + 20\cdot 43^{4} + 22\cdot 43^{5} + 7\cdot 43^{6} + 43^{7} + 27\cdot 43^{8} + 39\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 24 + 5\cdot 43 + 8\cdot 43^{2} + 9\cdot 43^{3} + 22\cdot 43^{4} + 20\cdot 43^{5} + 35\cdot 43^{6} + 41\cdot 43^{7} + 15\cdot 43^{8} + 3\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 29 + 36\cdot 43 + 30\cdot 43^{2} + 12\cdot 43^{3} + 17\cdot 43^{4} + 14\cdot 43^{5} + 12\cdot 43^{6} + 24\cdot 43^{7} + 13\cdot 43^{8} + 23\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 37 + 21\cdot 43 + 37\cdot 43^{2} + 34\cdot 43^{3} + 21\cdot 43^{4} + 32\cdot 43^{5} + 29\cdot 43^{6} + 25\cdot 43^{7} + 42\cdot 43^{8} + 38\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 39 + 14\cdot 43 + 18\cdot 43^{2} + 28\cdot 43^{3} + 41\cdot 43^{4} + 38\cdot 43^{5} + 12\cdot 43^{6} + 18\cdot 43^{7} + 6\cdot 43^{8} + 28\cdot 43^{9} +O\left(43^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,8)(3,6)$
$(1,3,8,6)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,8)(3,6)$ $0$ $0$
$4$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$ $0$
$1$ $4$ $(1,6,8,3)(2,5,7,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,3,8,6)(2,4,7,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$ $0$
$2$ $4$ $(1,3,8,6)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,6,8,3)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,8)(2,5,7,4)(3,6)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,8)(2,4,7,5)(3,6)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$4$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$4$ $8$ $(1,7,6,4,8,2,3,5)$ $0$ $0$
$4$ $8$ $(1,4,3,7,8,5,6,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.