Properties

Label 2.2e4_3_13e2.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8112= 2^{4} \cdot 3 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} + 14 x^{6} + 223 x^{4} + 1062 x^{2} + 7569 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 5\cdot 23 + 15\cdot 23^{2} + 20\cdot 23^{3} + 18\cdot 23^{4} + 13\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 + 8\cdot 23 + 8\cdot 23^{2} + 14\cdot 23^{3} + 3\cdot 23^{4} + 2\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 + 11\cdot 23 + 12\cdot 23^{2} + 11\cdot 23^{3} + 11\cdot 23^{4} + 6\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 23 + 13\cdot 23^{2} + 11\cdot 23^{4} + 22\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 21\cdot 23 + 9\cdot 23^{2} + 22\cdot 23^{3} + 11\cdot 23^{4} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 17 + 11\cdot 23 + 10\cdot 23^{2} + 11\cdot 23^{3} + 11\cdot 23^{4} + 16\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 20 + 14\cdot 23 + 14\cdot 23^{2} + 8\cdot 23^{3} + 19\cdot 23^{4} + 20\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 21 + 17\cdot 23 + 7\cdot 23^{2} + 2\cdot 23^{3} + 4\cdot 23^{4} + 9\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $4$ $(1,7,5,6)(2,4,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.