Properties

Label 2.2e4_3_13e2.4t3.8
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8112= 2^{4} \cdot 3 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 13 x^{6} + 117 x^{4} - 676 x^{2} + 2704 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 12\cdot 43 + 34\cdot 43^{2} + 23\cdot 43^{3} + 14\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 26\cdot 43 + 20\cdot 43^{2} + 17\cdot 43^{3} + 16\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 18\cdot 43 + 30\cdot 43^{2} + 4\cdot 43^{3} + 17\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 22\cdot 43 + 14\cdot 43^{2} + 43^{3} + 37\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 20\cdot 43 + 28\cdot 43^{2} + 41\cdot 43^{3} + 5\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 + 24\cdot 43 + 12\cdot 43^{2} + 38\cdot 43^{3} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 27 + 16\cdot 43 + 22\cdot 43^{2} + 25\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 28 + 30\cdot 43 + 8\cdot 43^{2} + 19\cdot 43^{3} + 28\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.