Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 12\cdot 43 + 34\cdot 43^{2} + 23\cdot 43^{3} + 14\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 26\cdot 43 + 20\cdot 43^{2} + 17\cdot 43^{3} + 16\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 + 18\cdot 43 + 30\cdot 43^{2} + 4\cdot 43^{3} + 17\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 22\cdot 43 + 14\cdot 43^{2} + 43^{3} + 37\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 + 20\cdot 43 + 28\cdot 43^{2} + 41\cdot 43^{3} + 5\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 26 + 24\cdot 43 + 12\cdot 43^{2} + 38\cdot 43^{3} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 27 + 16\cdot 43 + 22\cdot 43^{2} + 25\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 28 + 30\cdot 43 + 8\cdot 43^{2} + 19\cdot 43^{3} + 28\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,5)(4,7)(6,8)$ |
| $(1,2,8,7)(3,4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,4,6,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.