Properties

Label 2.2e4_3_13e2.4t3.7
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8112= 2^{4} \cdot 3 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 38 x^{6} + 379 x^{4} - 498 x^{2} + 81 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 26\cdot 179 + 76\cdot 179^{2} + 68\cdot 179^{3} + 51\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 53\cdot 179 + 137\cdot 179^{2} + 136\cdot 179^{3} + 130\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 79 + 73\cdot 179 + 82\cdot 179^{2} + 91\cdot 179^{3} + 175\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 88 + 78\cdot 179 + 35\cdot 179^{2} + 19\cdot 179^{3} + 103\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 91 + 100\cdot 179 + 143\cdot 179^{2} + 159\cdot 179^{3} + 75\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 100 + 105\cdot 179 + 96\cdot 179^{2} + 87\cdot 179^{3} + 3\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 126 + 125\cdot 179 + 41\cdot 179^{2} + 42\cdot 179^{3} + 48\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 138 + 152\cdot 179 + 102\cdot 179^{2} + 110\cdot 179^{3} + 127\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2,6,4)(3,5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $4$ $(1,2,6,4)(3,5,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.