Properties

Label 2.2e4_3_13.8t17.2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{4} \cdot 3 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$624= 2^{4} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} + 7 x^{6} + 20 x^{4} + 26 x^{2} + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 751 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 53 + 196\cdot 751 + 731\cdot 751^{2} + 718\cdot 751^{3} + 530\cdot 751^{4} + 33\cdot 751^{5} + 495\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 129 + 18\cdot 751 + 363\cdot 751^{2} + 103\cdot 751^{3} + 63\cdot 751^{4} + 477\cdot 751^{5} + 741\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 203 + 411\cdot 751 + 393\cdot 751^{2} + 421\cdot 751^{3} + 62\cdot 751^{4} + 338\cdot 751^{5} + 130\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 228 + 217\cdot 751 + 685\cdot 751^{2} + 15\cdot 751^{3} + 427\cdot 751^{4} + 585\cdot 751^{5} + 699\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 523 + 533\cdot 751 + 65\cdot 751^{2} + 735\cdot 751^{3} + 323\cdot 751^{4} + 165\cdot 751^{5} + 51\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 548 + 339\cdot 751 + 357\cdot 751^{2} + 329\cdot 751^{3} + 688\cdot 751^{4} + 412\cdot 751^{5} + 620\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 622 + 732\cdot 751 + 387\cdot 751^{2} + 647\cdot 751^{3} + 687\cdot 751^{4} + 273\cdot 751^{5} + 9\cdot 751^{6} +O\left(751^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 698 + 554\cdot 751 + 19\cdot 751^{2} + 32\cdot 751^{3} + 220\cdot 751^{4} + 717\cdot 751^{5} + 255\cdot 751^{6} +O\left(751^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5,6,4)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,5)(2,3)(4,8)(6,7)$
$(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$4$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$ $0$
$1$ $4$ $(1,7,8,2)(3,5,6,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,2,8,7)(3,4,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$ $0$
$2$ $4$ $(3,5,6,4)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(3,4,6,5)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,2,8,7)(3,6)(4,5)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,7,8,2)(3,6)(4,5)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$4$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$4$ $8$ $(1,6,7,4,8,3,2,5)$ $0$ $0$
$4$ $8$ $(1,4,2,6,8,5,7,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.