Properties

Label 2.2e4_3_13.4t3.9c1
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$624= 2^{4} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 20 x^{6} - 22 x^{5} + 11 x^{4} - 10 x^{3} + 34 x^{2} + 30 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e2_3_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 187\cdot 191 + 86\cdot 191^{2} + 75\cdot 191^{3} + 94\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 116\cdot 191 + 107\cdot 191^{2} + 108\cdot 191^{3} + 72\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 169\cdot 191 + 71\cdot 191^{2} + 13\cdot 191^{3} + 156\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 + 159\cdot 191 + 106\cdot 191^{2} + 43\cdot 191^{3} + 63\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 141 + 86\cdot 191 + 74\cdot 191^{2} + 185\cdot 191^{3} + 99\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 148 + 19\cdot 191 + 93\cdot 191^{2} + 44\cdot 191^{3} + 146\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 154 + 9\cdot 191 + 128\cdot 191^{2} + 74\cdot 191^{3} + 53\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 159 + 15\cdot 191 + 95\cdot 191^{2} + 27\cdot 191^{3} + 78\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,7)(5,8)$
$(1,3,8,7)(2,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,7)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,4)(2,3)(5,7)(6,8)$$0$
$2$$4$$(1,3,8,7)(2,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.