Properties

Label 2.2e4_3_13.4t3.8
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$624= 2^{4} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} + x^{6} + 4 x^{4} - 3 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 36\cdot 79 + 66\cdot 79^{2} + 18\cdot 79^{3} + 4\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 7\cdot 79 + 36\cdot 79^{2} + 65\cdot 79^{3} + 51\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 5\cdot 79 + 44\cdot 79^{2} + 68\cdot 79^{3} + 18\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 54\cdot 79 + 9\cdot 79^{2} + 5\cdot 79^{3} + 5\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 24\cdot 79 + 69\cdot 79^{2} + 73\cdot 79^{3} + 73\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 53 + 73\cdot 79 + 34\cdot 79^{2} + 10\cdot 79^{3} + 60\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 62 + 71\cdot 79 + 42\cdot 79^{2} + 13\cdot 79^{3} + 27\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 66 + 42\cdot 79 + 12\cdot 79^{2} + 60\cdot 79^{3} + 74\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.