Properties

Label 2.2e4_3_13.4t3.7
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$624= 2^{4} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 12 x^{6} + 26 x^{5} + 35 x^{4} - 26 x^{3} - 14 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 33 + 83\cdot 107 + 52\cdot 107^{2} + 57\cdot 107^{3} + 61\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 13\cdot 107 + 101\cdot 107^{2} + 106\cdot 107^{3} + 74\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 102\cdot 107 + 25\cdot 107^{2} + 99\cdot 107^{3} + 68\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 58\cdot 107 + 25\cdot 107^{2} + 65\cdot 107^{3} + 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 + 39\cdot 107 + 61\cdot 107^{2} + 49\cdot 107^{3} + 68\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 93 + 14\cdot 107 + 34\cdot 107^{2} + 57\cdot 107^{3} + 8\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 97 + 42\cdot 107 + 50\cdot 107^{2} + 93\cdot 107^{3} + 2\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 100 + 72\cdot 107 + 76\cdot 107^{2} + 5\cdot 107^{3} + 34\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,8)(5,6)$
$(1,2,6,3)(4,8,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,5)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $0$
$2$ $2$ $(1,7)(2,5)(3,4)(6,8)$ $0$
$2$ $4$ $(1,2,6,3)(4,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.