Properties

Label 2.2e4_3_13.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 3 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$624= 2^{4} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - 5 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 42\cdot 107 + 107^{2} + 106\cdot 107^{3} + 62\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 + 17\cdot 107 + 81\cdot 107^{2} + 6\cdot 107^{3} + 3\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 89\cdot 107 + 25\cdot 107^{2} + 100\cdot 107^{3} + 103\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 64\cdot 107 + 105\cdot 107^{2} + 44\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.