Properties

Label 2.2e4_3_13.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 3 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$624= 2^{4} \cdot 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 4 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 35 + 60\cdot 107 + 24\cdot 107^{2} + 100\cdot 107^{3} + 5\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 104\cdot 107 + 59\cdot 107^{2} + 50\cdot 107^{3} + 5\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 55\cdot 107 + 102\cdot 107^{2} + 105\cdot 107^{3} + 30\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 100\cdot 107 + 26\cdot 107^{2} + 64\cdot 107^{3} + 64\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.