Properties

Label 2.2e4_3_11.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$528= 2^{4} \cdot 3 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 2 x^{5} - 5 x^{4} - 2 x^{3} + 146 x^{2} - 242 x + 253 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 39\cdot 59 + 50\cdot 59^{2} + 27\cdot 59^{3} + 42\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 32\cdot 59 + 29\cdot 59^{2} + 10\cdot 59^{3} + 47\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 42\cdot 59 + 59^{2} + 30\cdot 59^{3} + 24\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 54\cdot 59 + 53\cdot 59^{2} + 27\cdot 59^{3} + 47\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 52 + 34\cdot 59 + 15\cdot 59^{2} + 46\cdot 59^{3} + 21\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 55 + 35\cdot 59 + 39\cdot 59^{2} + 12\cdot 59^{3} + 29\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 + 7\cdot 59 + 12\cdot 59^{2} + 31\cdot 59^{3} + 24\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 46\cdot 59 + 32\cdot 59^{2} + 49\cdot 59^{3} + 57\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,5)(3,7)(6,8)$
$(1,2)(3,6)(4,7)(5,8)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $0$
$2$ $2$ $(1,4)(2,5)(3,7)(6,8)$ $0$
$2$ $4$ $(1,5,6,7)(2,4,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.