Properties

Label 2.2e4_3_103.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 3 \cdot 103 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4944= 2^{4} \cdot 3 \cdot 103 $
Artin number field: Splitting field of $f= x^{8} + 40 x^{6} + 1612 x^{4} - 480 x^{2} + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 24\cdot 43 + 12\cdot 43^{2} + 23\cdot 43^{3} + 32\cdot 43^{4} + 21\cdot 43^{5} + 21\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 + 23\cdot 43 + 36\cdot 43^{2} + 40\cdot 43^{3} + 28\cdot 43^{4} + 13\cdot 43^{5} + 38\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 + 39\cdot 43 + 3\cdot 43^{2} + 21\cdot 43^{3} + 39\cdot 43^{4} + 3\cdot 43^{5} + 34\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 + 19\cdot 43 + 14\cdot 43^{2} + 22\cdot 43^{3} + 17\cdot 43^{4} + 29\cdot 43^{5} + 14\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 29 + 23\cdot 43 + 28\cdot 43^{2} + 20\cdot 43^{3} + 25\cdot 43^{4} + 13\cdot 43^{5} + 28\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 30 + 3\cdot 43 + 39\cdot 43^{2} + 21\cdot 43^{3} + 3\cdot 43^{4} + 39\cdot 43^{5} + 8\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 35 + 19\cdot 43 + 6\cdot 43^{2} + 2\cdot 43^{3} + 14\cdot 43^{4} + 29\cdot 43^{5} + 4\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 41 + 18\cdot 43 + 30\cdot 43^{2} + 19\cdot 43^{3} + 10\cdot 43^{4} + 21\cdot 43^{5} + 21\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.