Properties

Label 2.2e4_37.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$592= 2^{4} \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 6 x^{3} + 9 x^{2} + 37 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 21\cdot 23 + 4\cdot 23^{2} + 13\cdot 23^{3} + 21\cdot 23^{4} + 22\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 22 + \left(19 a + 6\right)\cdot 23 + \left(18 a + 22\right)\cdot 23^{2} + \left(4 a + 4\right)\cdot 23^{3} + 11\cdot 23^{4} + \left(6 a + 18\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 8 + \left(2 a + 17\right)\cdot 23 + \left(22 a + 22\right)\cdot 23^{2} + \left(5 a + 9\right)\cdot 23^{3} + 3\cdot 23^{4} + \left(22 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 12 + \left(3 a + 5\right)\cdot 23 + \left(4 a + 17\right)\cdot 23^{2} + \left(18 a + 18\right)\cdot 23^{3} + \left(22 a + 6\right)\cdot 23^{4} + \left(16 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 15 + \left(20 a + 7\right)\cdot 23 + 18\cdot 23^{2} + \left(17 a + 22\right)\cdot 23^{3} + \left(22 a + 20\right)\cdot 23^{4} + 21\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 13 + 10\cdot 23 + 6\cdot 23^{2} + 22\cdot 23^{3} + 4\cdot 23^{4} + 20\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)$$-2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$3$$2$$(1,3)(4,6)$$0$
$2$$3$$(1,5,3)(2,4,6)$$-1$
$2$$6$$(1,4,5,6,3,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.