Properties

Label 2.2e4_19_47.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{4} \cdot 19 \cdot 47 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$14288= 2^{4} \cdot 19 \cdot 47 $
Artin number field: Splitting field of $f= x^{4} + 26 x^{2} - 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 9 + 5\cdot 23 + 6\cdot 23^{2} + 13\cdot 23^{3} + 5\cdot 23^{4} + 11\cdot 23^{5} + 15\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 + 10\cdot 23 + 13\cdot 23^{2} + 8\cdot 23^{3} + 14\cdot 23^{4} + 19\cdot 23^{5} + 16\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 + 12\cdot 23 + 9\cdot 23^{2} + 14\cdot 23^{3} + 8\cdot 23^{4} + 3\cdot 23^{5} + 6\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 + 17\cdot 23 + 16\cdot 23^{2} + 9\cdot 23^{3} + 17\cdot 23^{4} + 11\cdot 23^{5} + 7\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.