Properties

Label 2.2e4_19.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$304= 2^{4} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} + 6 x^{3} - 7 x^{2} + 8 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 28 + \left(25 a + 20\right)\cdot 31 + \left(20 a + 15\right)\cdot 31^{2} + \left(16 a + 19\right)\cdot 31^{3} + \left(20 a + 14\right)\cdot 31^{4} + \left(22 a + 25\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 10 + \left(18 a + 26\right)\cdot 31 + \left(8 a + 12\right)\cdot 31^{2} + \left(11 a + 21\right)\cdot 31^{3} + 4\cdot 31^{4} + \left(16 a + 22\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 13 + \left(5 a + 1\right)\cdot 31 + \left(10 a + 1\right)\cdot 31^{2} + \left(14 a + 1\right)\cdot 31^{3} + \left(10 a + 8\right)\cdot 31^{4} + \left(8 a + 19\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 22 + 8\cdot 31 + 14\cdot 31^{2} + 10\cdot 31^{3} + 8\cdot 31^{4} + 17\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 30 + \left(12 a + 21\right)\cdot 31 + \left(22 a + 11\right)\cdot 31^{2} + \left(19 a + 4\right)\cdot 31^{3} + \left(30 a + 25\right)\cdot 31^{4} + \left(14 a + 22\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 23 + 13\cdot 31 + 6\cdot 31^{2} + 5\cdot 31^{3} + 31^{4} + 17\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,4)$
$(1,2,4,5,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)$$-2$
$3$$2$$(2,6)(3,4)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$2$$3$$(1,4,3)(2,5,6)$$-1$
$2$$6$$(1,2,4,5,3,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.