Properties

Label 2.2e4_17e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{4} \cdot 17^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4624= 2^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 11 x^{6} - 2 x^{5} - 15 x^{4} + 6 x^{3} - 54 x^{2} - 96 x - 38 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 20\cdot 53 + 38\cdot 53^{2} + 51\cdot 53^{3} + 44\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 20\cdot 53 + 11\cdot 53^{2} + 34\cdot 53^{3} + 22\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 3\cdot 53 + 28\cdot 53^{2} + 51\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 40\cdot 53 + 53^{2} + 20\cdot 53^{3} + 8\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 + 45\cdot 53 + 52\cdot 53^{2} + 7\cdot 53^{3} + 29\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 + 52\cdot 53 + 39\cdot 53^{2} + 43\cdot 53^{3} + 45\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 41 + 11\cdot 53 + 45\cdot 53^{2} + 49\cdot 53^{3} + 6\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 45 + 17\cdot 53 + 47\cdot 53^{2} + 3\cdot 53^{3} + 3\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,8,2,3,4,7,5)$
$(2,6)(4,5)(7,8)$
$(1,7,3,8)(2,6,5,4)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,5)(4,6)(7,8)$ $-2$ $-2$
$4$ $2$ $(2,6)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,8,3,7)(2,4,5,6)$ $0$ $0$
$4$ $4$ $(1,2,3,5)(4,8,6,7)$ $0$ $0$
$2$ $8$ $(1,6,8,2,3,4,7,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,4,8,5,3,6,7,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.