Properties

Label 2.2e4_17.8t6.1c2
Dimension 2
Group $D_{8}$
Conductor $ 2^{4} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$272= 2^{4} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{4} - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12 + 139\cdot 149 + 34\cdot 149^{2} + 54\cdot 149^{3} + 32\cdot 149^{4} + 111\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 124\cdot 149 + 96\cdot 149^{2} + 138\cdot 149^{3} + 37\cdot 149^{4} + 129\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 41 + 95\cdot 149 + 111\cdot 149^{2} + 97\cdot 149^{3} + 110\cdot 149^{4} + 75\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 68 + 133\cdot 149 + 21\cdot 149^{2} + 97\cdot 149^{3} + 13\cdot 149^{4} + 101\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 81 + 15\cdot 149 + 127\cdot 149^{2} + 51\cdot 149^{3} + 135\cdot 149^{4} + 47\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 108 + 53\cdot 149 + 37\cdot 149^{2} + 51\cdot 149^{3} + 38\cdot 149^{4} + 73\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 133 + 24\cdot 149 + 52\cdot 149^{2} + 10\cdot 149^{3} + 111\cdot 149^{4} + 19\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 137 + 9\cdot 149 + 114\cdot 149^{2} + 94\cdot 149^{3} + 116\cdot 149^{4} + 37\cdot 149^{5} +O\left(149^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(5,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(1,4)(2,7)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$8$$(1,7,5,6,8,2,4,3)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,6,4,7,8,3,5,2)$$-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.