Properties

Label 2.2e4_163.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 2^{4} \cdot 163 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$2608= 2^{4} \cdot 163 $
Artin number field: Splitting field of $f= x^{8} - 9 x^{6} + 23 x^{4} - 14 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.163.3t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 2 a^{2} + 3 a + 1 + \left(4 a^{2} + 7 a + 10\right)\cdot 11 + \left(9 a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 5 a + 5\right)\cdot 11^{3} + \left(5 a^{2} + 9 a + 1\right)\cdot 11^{4} + \left(10 a^{2} + 8 a + 10\right)\cdot 11^{5} + \left(5 a^{2} + 9 a + 2\right)\cdot 11^{6} + \left(2 a^{2} + 1\right)\cdot 11^{7} + \left(a^{2} + 9 a + 9\right)\cdot 11^{8} + \left(5 a^{2} + 5 a + 9\right)\cdot 11^{9} + \left(10 a^{2} + 10 a + 3\right)\cdot 11^{10} + \left(a^{2} + 9 a + 8\right)\cdot 11^{11} + \left(6 a^{2} + 4 a + 10\right)\cdot 11^{12} + \left(a^{2} + a + 6\right)\cdot 11^{13} + \left(9 a^{2} + 5 a\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 3 + \left(10 a^{2} + 6 a + 5\right)\cdot 11 + \left(8 a^{2} + 5 a + 8\right)\cdot 11^{2} + \left(5 a^{2} + 2 a + 5\right)\cdot 11^{3} + \left(2 a^{2} + a + 9\right)\cdot 11^{4} + \left(10 a^{2} + 2 a + 2\right)\cdot 11^{5} + \left(5 a^{2} + 4 a + 9\right)\cdot 11^{6} + \left(8 a + 2\right)\cdot 11^{7} + \left(9 a^{2} + 10 a + 8\right)\cdot 11^{8} + \left(2 a + 1\right)\cdot 11^{9} + \left(10 a^{2} + a + 5\right)\cdot 11^{10} + \left(7 a^{2} + 9 a + 8\right)\cdot 11^{11} + \left(7 a^{2} + a + 7\right)\cdot 11^{12} + \left(9 a^{2} + 3 a\right)\cdot 11^{13} + \left(4 a^{2} + 4 a + 7\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 8 + 8\cdot 11 + 10\cdot 11^{2} + 4\cdot 11^{3} + 2\cdot 11^{4} + 8\cdot 11^{5} + 2\cdot 11^{6} + 2\cdot 11^{7} + 4\cdot 11^{8} + 2\cdot 11^{9} + 6\cdot 11^{10} + 4\cdot 11^{11} + 5\cdot 11^{12} + 3\cdot 11^{13} + 4\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 8 a + 8 + \left(5 a^{2} + 9 a + 8\right)\cdot 11 + \left(8 a^{2} + 6 a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 7 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 2 a\right)\cdot 11^{4} + \left(10 a^{2} + 4 a + 3\right)\cdot 11^{5} + \left(10 a^{2} + 5 a + 2\right)\cdot 11^{6} + \left(8 a^{2} + 7 a + 6\right)\cdot 11^{7} + \left(7 a^{2} + a + 10\right)\cdot 11^{8} + \left(6 a^{2} + 8 a\right)\cdot 11^{9} + \left(10 a^{2} + a + 4\right)\cdot 11^{10} + \left(5 a^{2} + 10 a + 6\right)\cdot 11^{11} + \left(a^{2} + 7 a + 4\right)\cdot 11^{12} + \left(8 a^{2} + a + 8\right)\cdot 11^{13} + \left(6 a^{2} + 10 a + 4\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 8 a + 10 + \left(6 a^{2} + 3 a\right)\cdot 11 + \left(10 a^{2} + a + 7\right)\cdot 11^{2} + \left(2 a^{2} + 5 a + 5\right)\cdot 11^{3} + \left(5 a^{2} + a + 9\right)\cdot 11^{4} + 2 a\cdot 11^{5} + \left(5 a^{2} + a + 8\right)\cdot 11^{6} + \left(8 a^{2} + 10 a + 9\right)\cdot 11^{7} + \left(9 a^{2} + a + 1\right)\cdot 11^{8} + \left(5 a^{2} + 5 a + 1\right)\cdot 11^{9} + 7\cdot 11^{10} + \left(9 a^{2} + a + 2\right)\cdot 11^{11} + \left(4 a^{2} + 6 a\right)\cdot 11^{12} + \left(9 a^{2} + 9 a + 4\right)\cdot 11^{13} + \left(a^{2} + 5 a + 10\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 8 + \left(5 a + 5\right)\cdot 11 + \left(2 a^{2} + 5 a + 2\right)\cdot 11^{2} + \left(5 a^{2} + 8 a + 5\right)\cdot 11^{3} + \left(8 a^{2} + 9 a + 1\right)\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + \left(5 a^{2} + 6 a + 1\right)\cdot 11^{6} + \left(10 a^{2} + 2 a + 8\right)\cdot 11^{7} + \left(a^{2} + 2\right)\cdot 11^{8} + \left(10 a^{2} + 8 a + 9\right)\cdot 11^{9} + \left(9 a + 5\right)\cdot 11^{10} + \left(3 a^{2} + a + 2\right)\cdot 11^{11} + \left(3 a^{2} + 9 a + 3\right)\cdot 11^{12} + \left(a^{2} + 7 a + 10\right)\cdot 11^{13} + \left(6 a^{2} + 6 a + 3\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 3 + 2\cdot 11 + 6\cdot 11^{3} + 8\cdot 11^{4} + 2\cdot 11^{5} + 8\cdot 11^{6} + 8\cdot 11^{7} + 6\cdot 11^{8} + 8\cdot 11^{9} + 4\cdot 11^{10} + 6\cdot 11^{11} + 5\cdot 11^{12} + 7\cdot 11^{13} + 6\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 3 a + 3 + \left(5 a^{2} + a + 2\right)\cdot 11 + \left(2 a^{2} + 4 a + 7\right)\cdot 11^{2} + \left(2 a^{2} + 3 a + 4\right)\cdot 11^{3} + \left(3 a^{2} + 8 a + 10\right)\cdot 11^{4} + \left(6 a + 7\right)\cdot 11^{5} + \left(5 a + 8\right)\cdot 11^{6} + \left(2 a^{2} + 3 a + 4\right)\cdot 11^{7} + \left(3 a^{2} + 9 a\right)\cdot 11^{8} + \left(4 a^{2} + 2 a + 10\right)\cdot 11^{9} + \left(9 a + 6\right)\cdot 11^{10} + \left(5 a^{2} + 4\right)\cdot 11^{11} + \left(9 a^{2} + 3 a + 6\right)\cdot 11^{12} + \left(2 a^{2} + 9 a + 2\right)\cdot 11^{13} + \left(4 a^{2} + 6\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4,3)(6,8,7)$
$(1,8,5,4)(2,7,6,3)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,7,5,3)(2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(1,7,2)(3,6,5)$$\zeta_{3} + 1$
$4$$3$$(1,2,7)(3,5,6)$$-\zeta_{3}$
$6$$4$$(1,7,5,3)(2,4,6,8)$$0$
$4$$6$$(1,6,7,5,2,3)(4,8)$$\zeta_{3}$
$4$$6$$(1,3,2,5,7,6)(4,8)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.