Properties

Label 2.2e4_11e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1936= 2^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 3 x^{4} + 6 x^{3} + 2 x^{2} - 6 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 26\cdot 37 + 7\cdot 37^{2} + 26\cdot 37^{3} + 24\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 14\cdot 37 + 22\cdot 37^{2} + 26\cdot 37^{3} + 15\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 11\cdot 37 + 6\cdot 37^{2} + 14\cdot 37^{3} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 14\cdot 37 + 36\cdot 37^{2} + 29\cdot 37^{3} + 3\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 + 22\cdot 37 + 7\cdot 37^{3} + 33\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 + 25\cdot 37 + 30\cdot 37^{2} + 22\cdot 37^{3} + 36\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 33 + 22\cdot 37 + 14\cdot 37^{2} + 10\cdot 37^{3} + 21\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 36 + 10\cdot 37 + 29\cdot 37^{2} + 10\cdot 37^{3} + 12\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,2,6)(3,8,5,7)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,4,2,6)(3,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.