Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 26\cdot 37 + 7\cdot 37^{2} + 26\cdot 37^{3} + 24\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 + 14\cdot 37 + 22\cdot 37^{2} + 26\cdot 37^{3} + 15\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 + 11\cdot 37 + 6\cdot 37^{2} + 14\cdot 37^{3} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 + 14\cdot 37 + 36\cdot 37^{2} + 29\cdot 37^{3} + 3\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 25 + 22\cdot 37 + 7\cdot 37^{3} + 33\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 31 + 25\cdot 37 + 30\cdot 37^{2} + 22\cdot 37^{3} + 36\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 33 + 22\cdot 37 + 14\cdot 37^{2} + 10\cdot 37^{3} + 21\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 36 + 10\cdot 37 + 29\cdot 37^{2} + 10\cdot 37^{3} + 12\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,4,2,6)(3,8,5,7)$ |
| $(1,3)(2,5)(4,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)(3,4)(5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,6)(3,8,5,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.