Properties

Label 2.2e4_11e2.24t22.2c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{4} \cdot 11^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1936= 2^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 22 x^{5} - 44 x^{4} - 88 x^{3} - 66 x^{2} - 44 x + 22 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 5 + \left(18 a + 11\right)\cdot 19 + 4\cdot 19^{2} + \left(14 a + 17\right)\cdot 19^{3} + \left(18 a + 8\right)\cdot 19^{4} + \left(4 a + 1\right)\cdot 19^{5} + \left(18 a + 3\right)\cdot 19^{6} + \left(13 a + 15\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 16 + 6\cdot 19 + 12\cdot 19^{2} + 15\cdot 19^{3} + 6\cdot 19^{4} + 15\cdot 19^{5} + 10\cdot 19^{6} + 12\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 2 + 14\cdot 19 + \left(18 a + 5\right)\cdot 19^{2} + \left(4 a + 11\right)\cdot 19^{3} + 13\cdot 19^{4} + \left(14 a + 6\right)\cdot 19^{5} + 16\cdot 19^{6} + \left(5 a + 10\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 9 + 19 + 14\cdot 19^{2} + 2\cdot 19^{3} + 5\cdot 19^{4} + 16\cdot 19^{5} + 4\cdot 19^{6} + 8\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 2 + \left(6 a + 14\right)\cdot 19 + 12\cdot 19^{2} + \left(a + 1\right)\cdot 19^{3} + \left(7 a + 4\right)\cdot 19^{4} + \left(12 a + 12\right)\cdot 19^{5} + \left(13 a + 11\right)\cdot 19^{6} + \left(17 a + 12\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ a + 1 + \left(12 a + 3\right)\cdot 19 + \left(18 a + 6\right)\cdot 19^{2} + \left(17 a + 2\right)\cdot 19^{3} + \left(11 a + 10\right)\cdot 19^{4} + \left(6 a + 17\right)\cdot 19^{5} + \left(5 a + 12\right)\cdot 19^{6} + \left(a + 16\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 3 a + \left(3 a + 3\right)\cdot 19 + \left(11 a + 6\right)\cdot 19^{2} + \left(7 a + 14\right)\cdot 19^{3} + 14 a\cdot 19^{4} + \left(8 a + 6\right)\cdot 19^{5} + \left(15 a + 14\right)\cdot 19^{6} + \left(11 a + 1\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 16 a + 3 + \left(15 a + 3\right)\cdot 19 + \left(7 a + 14\right)\cdot 19^{2} + \left(11 a + 10\right)\cdot 19^{3} + \left(4 a + 7\right)\cdot 19^{4} + 10 a\cdot 19^{5} + \left(3 a + 2\right)\cdot 19^{6} + \left(7 a + 17\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5,8)(3,4,6)$
$(1,6,7,5)(2,3,4,8)$
$(2,6)(3,8)(4,5)$
$(1,8,7,3)(2,6,4,5)$
$(1,7)(2,4)(3,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,4)(3,8)(5,6)$$-2$
$12$$2$$(2,6)(3,8)(4,5)$$0$
$8$$3$$(1,2,3)(4,8,7)$$-1$
$6$$4$$(1,8,7,3)(2,6,4,5)$$0$
$8$$6$$(1,6,4,7,5,2)(3,8)$$1$
$6$$8$$(1,6,3,2,7,5,8,4)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,5,3,4,7,6,8,2)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.