Properties

Label 2.2e4_11_43.6t3.4c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 11 \cdot 43 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$7568= 2^{4} \cdot 11 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} + 30 x^{4} + 225 x^{2} + 473 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.11_43.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 14\cdot 71 + 20\cdot 71^{2} + 50\cdot 71^{3} + 67\cdot 71^{4} + 50\cdot 71^{5} + 65\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 44 + \left(50 a + 41\right)\cdot 71 + \left(58 a + 47\right)\cdot 71^{2} + \left(47 a + 6\right)\cdot 71^{3} + \left(38 a + 19\right)\cdot 71^{4} + \left(30 a + 14\right)\cdot 71^{5} + \left(70 a + 13\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 29 + \left(20 a + 43\right)\cdot 71 + \left(12 a + 43\right)\cdot 71^{2} + \left(23 a + 43\right)\cdot 71^{3} + \left(32 a + 48\right)\cdot 71^{4} + \left(40 a + 36\right)\cdot 71^{5} + 52\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 69 + 56\cdot 71 + 50\cdot 71^{2} + 20\cdot 71^{3} + 3\cdot 71^{4} + 20\cdot 71^{5} + 5\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 43 a + 27 + \left(20 a + 29\right)\cdot 71 + \left(12 a + 23\right)\cdot 71^{2} + \left(23 a + 64\right)\cdot 71^{3} + \left(32 a + 51\right)\cdot 71^{4} + \left(40 a + 56\right)\cdot 71^{5} + 57\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 42 + \left(50 a + 27\right)\cdot 71 + \left(58 a + 27\right)\cdot 71^{2} + \left(47 a + 27\right)\cdot 71^{3} + \left(38 a + 22\right)\cdot 71^{4} + \left(30 a + 34\right)\cdot 71^{5} + \left(70 a + 18\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(3,4)$$0$
$2$$3$$(1,5,6)(2,3,4)$$-1$
$2$$6$$(1,3,5,4,6,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.