Properties

Label 2.2e4_11.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{4} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$176= 2^{4} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 6 x^{3} - 2 x^{2} - 8 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 4\cdot 7 + 6\cdot 7^{2} + 3\cdot 7^{3} + 6\cdot 7^{4} + 4\cdot 7^{5} + 7^{6} + 4\cdot 7^{7} +O\left(7^{ 8 }\right)$
$r_{ 2 }$ $=$ $ a + 4 + \left(a + 1\right)\cdot 7 + \left(5 a + 4\right)\cdot 7^{2} + \left(2 a + 2\right)\cdot 7^{3} + \left(5 a + 1\right)\cdot 7^{4} + \left(2 a + 4\right)\cdot 7^{5} + \left(6 a + 3\right)\cdot 7^{6} + \left(5 a + 4\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 5 + \left(5 a + 1\right)\cdot 7 + \left(a + 1\right)\cdot 7^{2} + 4 a\cdot 7^{3} + \left(a + 4\right)\cdot 7^{4} + \left(4 a + 1\right)\cdot 7^{5} + \left(a + 4\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 2 a + \left(4 a + 5\right)\cdot 7 + \left(2 a + 6\right)\cdot 7^{2} + 4\cdot 7^{3} + 3 a\cdot 7^{4} + \left(5 a + 5\right)\cdot 7^{5} + \left(5 a + 4\right)\cdot 7^{6} + \left(6 a + 6\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 2 + 2 a\cdot 7 + \left(4 a + 5\right)\cdot 7^{2} + \left(6 a + 2\right)\cdot 7^{3} + \left(3 a + 3\right)\cdot 7^{4} + a\cdot 7^{5} + \left(a + 5\right)\cdot 7^{6} +O\left(7^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 4 + 7 + 4\cdot 7^{2} + 6\cdot 7^{3} + 4\cdot 7^{4} + 4\cdot 7^{5} + 5\cdot 7^{6} +O\left(7^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2,4,6,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-2$
$3$ $2$ $(2,3)(4,5)$ $0$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$2$ $3$ $(1,4,5)(2,6,3)$ $-1$
$2$ $6$ $(1,2,4,6,5,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.