Properties

Label 2.2e3_97.5t2.1c2
Dimension 2
Group $D_{5}$
Conductor $ 2^{3} \cdot 97 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{5}$
Conductor:$776= 2^{3} \cdot 97 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 7 x^{3} + 5 x^{2} + 8 x - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Odd
Determinant: 1.2e3_97.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 11\cdot 17 + 4\cdot 17^{2} + 5\cdot 17^{3} + 6\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 7 + \left(14 a + 6\right)\cdot 17 + 6 a\cdot 17^{2} + \left(7 a + 7\right)\cdot 17^{3} + \left(3 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 5 + \left(4 a + 7\right)\cdot 17 + 5 a\cdot 17^{2} + \left(16 a + 10\right)\cdot 17^{3} + \left(2 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 12 + \left(2 a + 15\right)\cdot 17 + \left(10 a + 9\right)\cdot 17^{2} + \left(9 a + 7\right)\cdot 17^{3} + \left(13 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 6 + \left(12 a + 10\right)\cdot 17 + \left(11 a + 1\right)\cdot 17^{2} + 4\cdot 17^{3} + \left(14 a + 10\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,4)(2,5)$
$(1,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$2$
$5$$2$$(1,4)(2,5)$$0$
$2$$5$$(1,5,2,4,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
$2$$5$$(1,2,3,5,4)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.