Properties

Label 2.2e3_97.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 97 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$776= 2^{3} \cdot 97 $
Artin number field: Splitting field of $f= x^{8} + 26 x^{6} - 28 x^{5} + 87 x^{4} + 24 x^{3} - 94 x^{2} - 16 x + 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 22\cdot 31 + 7\cdot 31^{2} + 29\cdot 31^{3} + 10\cdot 31^{4} + 27\cdot 31^{5} + 23\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 + 2\cdot 31 + 16\cdot 31^{2} + 8\cdot 31^{3} + 28\cdot 31^{4} + 23\cdot 31^{5} + 18\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 + 22\cdot 31 + 2\cdot 31^{2} + 18\cdot 31^{3} + 5\cdot 31^{4} + 22\cdot 31^{5} + 3\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 17 + 24\cdot 31 + 13\cdot 31^{2} + 3\cdot 31^{3} + 25\cdot 31^{4} + 19\cdot 31^{5} + 17\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 + 31 + 12\cdot 31^{2} + 9\cdot 31^{3} + 10\cdot 31^{4} + 29\cdot 31^{5} + 3\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 + 12\cdot 31 + 20\cdot 31^{2} + 19\cdot 31^{3} + 27\cdot 31^{4} + 25\cdot 31^{5} + 29\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 22 + 2\cdot 31 + 20\cdot 31^{2} + 9\cdot 31^{3} + 29\cdot 31^{4} + 19\cdot 31^{5} + 21\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 24 + 4\cdot 31 + 26\cdot 31^{3} + 17\cdot 31^{4} + 17\cdot 31^{5} + 4\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,3,6,8)(2,4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,6,8)(2,4,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.