Properties

Label 2.2e3_89.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 89 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$712= 2^{3} \cdot 89 $
Artin number field: Splitting field of $f= x^{8} + 26 x^{6} - 28 x^{5} + 99 x^{4} - 8 x^{3} - 2 x^{2} - 88 x + 68 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 16 + 42\cdot 79 + 69\cdot 79^{2} + 7\cdot 79^{3} + 26\cdot 79^{4} + 71\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 + 49\cdot 79 + 12\cdot 79^{2} + 14\cdot 79^{3} + 25\cdot 79^{4} + 60\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 28 + 48\cdot 79 + 28\cdot 79^{2} + 79^{3} + 77\cdot 79^{4} + 57\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 42 + 52\cdot 79 + 2\cdot 79^{2} + 44\cdot 79^{3} + 78\cdot 79^{4} + 3\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 67 + 7\cdot 79 + 35\cdot 79^{2} + 19\cdot 79^{3} + 56\cdot 79^{4} + 35\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 71 + 12\cdot 79 + 13\cdot 79^{2} + 42\cdot 79^{3} + 28\cdot 79^{4} + 70\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 72 + 14\cdot 79 + 57\cdot 79^{2} + 25\cdot 79^{3} + 55\cdot 79^{4} + 24\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 78 + 8\cdot 79 + 18\cdot 79^{2} + 3\cdot 79^{3} + 48\cdot 79^{4} + 70\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,6)(5,7)$
$(1,3)(2,6)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,5)(3,4)(6,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,3)(2,6)(4,7)(5,8)$ $0$
$2$ $4$ $(1,6,7,8)(2,3,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.