Properties

Label 2.2e3_829.7t2.1c2
Dimension 2
Group $D_{7}$
Conductor $ 2^{3} \cdot 829 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$6632= 2^{3} \cdot 829 $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 4 x^{5} + 40 x^{4} - 53 x^{3} - 77 x^{2} + 328 x - 200 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.2e3_829.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 6 + \left(12 a + 6\right)\cdot 13 + \left(5 a + 6\right)\cdot 13^{2} + \left(7 a + 12\right)\cdot 13^{3} + \left(5 a + 9\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 5 + 8\cdot 13 + \left(8 a + 7\right)\cdot 13^{2} + 5 a\cdot 13^{3} + \left(7 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 5\cdot 13 + 8\cdot 13^{2} + 8\cdot 13^{3} + 3\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 1 + \left(12 a + 8\right)\cdot 13 + \left(6 a + 3\right)\cdot 13^{2} + \left(5 a + 3\right)\cdot 13^{3} + \left(8 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 8 + \left(6 a + 11\right)\cdot 13^{2} + \left(7 a + 1\right)\cdot 13^{3} + \left(4 a + 6\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 2 + \left(12 a + 12\right)\cdot 13 + \left(4 a + 1\right)\cdot 13^{2} + \left(7 a + 11\right)\cdot 13^{3} + \left(5 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 1 + 11\cdot 13 + \left(7 a + 12\right)\cdot 13^{2} + 5 a\cdot 13^{3} + \left(7 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,6)(4,5)$
$(1,3)(2,4)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,3)(2,4)(5,7)$$0$
$2$$7$$(1,3,7,4,6,2,5)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,7,6,5,3,4,2)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,4,5,7,2,3,6)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
The blue line marks the conjugacy class containing complex conjugation.