Properties

Label 2.2e3_7e2_23.4t3.12c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7^{2} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9016= 2^{3} \cdot 7^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 11 x^{6} - 22 x^{5} + 146 x^{4} - 194 x^{3} + 1121 x^{2} - 1614 x + 639 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_23.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 4\cdot 31 + 3\cdot 31^{2} + 23\cdot 31^{3} + 13\cdot 31^{4} + 22\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 2\cdot 31 + 31^{2} + 23\cdot 31^{3} + 5\cdot 31^{4} + 24\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 + 17\cdot 31 + 30\cdot 31^{2} + 9\cdot 31^{3} + 14\cdot 31^{4} + 17\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 + 2\cdot 31^{2} + 31^{3} + 13\cdot 31^{4} + 15\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 + 27\cdot 31 + 8\cdot 31^{2} + 18\cdot 31^{3} + 29\cdot 31^{4} + 8\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 19 + 9\cdot 31 + 26\cdot 31^{2} + 27\cdot 31^{3} + 20\cdot 31^{4} + 6\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 20 + 24\cdot 31 + 24\cdot 31^{2} + 14\cdot 31^{3} + 29\cdot 31^{4} + 30\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 21 + 7\cdot 31 + 27\cdot 31^{2} + 5\cdot 31^{3} + 28\cdot 31^{4} + 28\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,3)(4,7,5,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,3)(4,5)(6,7)$$-2$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,6)(2,5)(3,4)(7,8)$$0$
$2$$4$$(1,2,8,3)(4,7,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.