Properties

Label 2.2e3_7e2_11.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4312= 2^{3} \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 50 x^{6} - 136 x^{5} + 551 x^{4} - 880 x^{3} + 2354 x^{2} - 1936 x + 1936 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 9\cdot 71 + 17\cdot 71^{2} + 20\cdot 71^{3} + 58\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 14\cdot 71 + 5\cdot 71^{2} + 49\cdot 71^{3} + 47\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 40\cdot 71 + 35\cdot 71^{2} + 13\cdot 71^{3} + 16\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 25\cdot 71 + 47\cdot 71^{2} + 28\cdot 71^{3} + 65\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 + 45\cdot 71 + 23\cdot 71^{2} + 42\cdot 71^{3} + 5\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 41 + 30\cdot 71 + 35\cdot 71^{2} + 57\cdot 71^{3} + 54\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 56\cdot 71 + 65\cdot 71^{2} + 21\cdot 71^{3} + 23\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 61\cdot 71 + 53\cdot 71^{2} + 50\cdot 71^{3} + 12\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,7,4)(2,5,8,6)$
$(1,2)(3,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,7,4)(2,5,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.