Properties

Label 2.2e3_7e2_11.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 7^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4312= 2^{3} \cdot 7^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 22 x^{6} - 52 x^{5} + 145 x^{4} - 208 x^{3} + 3740 x^{2} - 3644 x + 1103 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 10\cdot 29 + 17\cdot 29^{2} + 16\cdot 29^{3} + 9\cdot 29^{4} + 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 14\cdot 29 + 26\cdot 29^{2} + 7\cdot 29^{3} + 16\cdot 29^{4} + 17\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 + 3\cdot 29 + 13\cdot 29^{2} + 8\cdot 29^{3} + 14\cdot 29^{4} + 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 + 27\cdot 29 + 27\cdot 29^{2} + 3\cdot 29^{3} + 11\cdot 29^{4} + 20\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 + 29 + 29^{2} + 25\cdot 29^{3} + 17\cdot 29^{4} + 8\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 23 + 25\cdot 29 + 15\cdot 29^{2} + 20\cdot 29^{3} + 14\cdot 29^{4} + 27\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 26 + 14\cdot 29 + 2\cdot 29^{2} + 21\cdot 29^{3} + 12\cdot 29^{4} + 11\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 27 + 18\cdot 29 + 11\cdot 29^{2} + 12\cdot 29^{3} + 19\cdot 29^{4} + 27\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,2,6)(3,8,5,7)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,4,2,6)(3,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.